▎ 摘 要
Incident-energy-dependent electron transmittances through single-layer graphene (SLG) and bilayer graphene (BLG) were investigated using time-dependent density functional theory. The transmittances of BLG with two kinds of stacking exhibit an unexpected crossing at a certain incident electron energy. The behavior is preserved for the BLG with reduced or increased layer distances compared to that of typical BLG. We determined the origin of the crossing by investigating transmission electron diffraction patterns for SLG.