• 文献标题:   In-Plane Electrical Connectivity and Near-Field Concentration of Isolated Graphene Resonators Realized by Ion Beams
  • 文献类型:   Article
  • 作  者:   LUO WW, CAI W, XIANG YX, WU W, SHI B, JIANG XJ, ZHANG N, REN MX, ZHANG XZ, XU JJ
  • 作者关键词:   electrical connectivity, graphene plasmon, graphene ring, ion beam, nearinfrared imaging
  • 出版物名称:   ADVANCED MATERIALS
  • ISSN:   0935-9648 EI 1521-4095
  • 通讯作者地址:   Nankai Univ
  • 被引频次:   6
  • DOI:   10.1002/adma.201701083
  • 出版年:   2017

▎ 摘  要

Graphene plasmons provide great opportunities in light-matter interactions benefiting from the extreme confinement and electrical tunability. Structured graphene cavities possess enhanced confinements in 3D and steerable plasmon resonances, potential in applications for sensing and emission control at the nanoscale. Besides graphene boundaries obtained by mask lithography, graphene defects engineered by ion beams have shown efficient plasmon reflections. In this paper, near-field responses of structured graphene achieved by ion beam direct-writing are investigated. Graphene nanoresonators are fabricated easily and precisely with a spatial resolution better than 30 nm. Breathing modes are observed in graphene disks. The amorphous carbons around weaken the response of edge modes in the resonators, but meanwhile render the isolated resonators in-plane electrical connections, where near-fields are proved gate-tunable. The realization of gate-tunable near-fields of graphene 2D resonators opens up tunable near-field couplings with matters. Moreover, graphene nonconcentric rings with engineered near-field confinement distributions are demonstrated, where the quadrupole plasmon modes are excited. Near-field mappings reveal concentrations at the scale of 3.8 x 10(-4) lambda(2)(0) within certain zones which can be engineered. The realization of electrically tunable graphene nanoresonators by ion beam direct-writing is promising for active manipulation of emission and sensing at the nanoscale.