• 文献标题:   Achieving commercial-level mass loading in ternary-doped holey graphene hydrogel electrodes for ultrahigh energy density supercapacitors
  • 文献类型:   Article
  • 作  者:   PAN ZH, ZHI HZ, QIU YC, YANG J, XING LD, ZHANG QC, DING XY, WANG XS, XU GG, YUAN H, CHEN M, LI WF, YAO YG, MOTTA N, LIU MN, ZHANG YG
  • 作者关键词:   supercapacitor, b n p ternarydoped, holey graphene hydrogel, commercial level graphene mass loading, ultrahigh energy density
  • 出版物名称:   NANO ENERGY
  • ISSN:   2211-2855 EI 2211-3282
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   31
  • DOI:   10.1016/j.nanoen.2018.02.007
  • 出版年:   2018

▎ 摘  要

Enabling fast ion diffusion in thick electrodes (100-200 mu m, similar to 10 mg cm(-2)) is critical for their practical application in state-of-the-art supercapacitors (SCs). We developed a three-dimensional (3D) boron, nitrogen, and phosphorus ternary-doped holey graphene hydrogel (BNP-HGH) film to achieve an optimized porous structure with a high electrical conductivity, large ion accessible surface area, efficient electron and ion transport pathways, as well as high ion adsorption capacity. The binder-free BNP-HGH electrode can deliver a specific capacitance of 350 F g(-1) and a volumetric capacity of 234 F cm(-3), which are the best performance reported so far for graphene-based SCs using an organic electrolyte. Fully packaged SCs using the BNP-HGH electrodes with a commercial level graphene mass loading (150 mu m, similar to 10 mg cm(-2)) can deliver ultrahigh stack gravimetric and volumetric energy densities of 38.5 Wh kg(-1) and 57.4 Wh L-1, respectively, which are comparable to those of lead-acid batteries (35-40 Wh kg(-1) and 50-90 Wh L-1) while maintaining an ultrahigh power density of 83 kW kg(-1) (similar to 55 kW L-1) as well as a long cycle life (81.3% capacitance retention over 50,000 cycles). The high energy and power densities bridge the gap between traditional SCs and batteries, and should be very useful in practical applications.