▎ 摘 要
Owing to polydispersity and polyfunctionality, the chemically controlled heterogeneous synthesis of graphene-based compounds is a great challenge for synthetic chemists. Graphene oxide as significant precursor is playing an irreplaceable part in multiple applications. The external temperature stimuliresponse process based on the chemistry of graphene oxide is not well understood. An improved fundamental understanding is a crucial prerequisite for their potential application in future. Here, a simple and efficient approach for the synchronized room-temperature surface and edge modification of hydramines (HA) on graphene oxide (GO) is reported. The chemical mechanism investigation of the simultaneous covalent/noncovalent functionalization demonstrates that GO is a metastable material, whose oxygen-containing functional groups could be regarded as active sites and involved in various reactions under such a low temperature. And the size and steric hindrance of substituent of organic molecules play a vital factor to affect the chemical activity. The accurate nanostructures of HA functionalized GO nanomaterials would effectively promote the controlled interfacial engineering of advanced graphene-based nanocomposites.