• 文献标题:   First-principles study on the electronic structures and contact properties of graphene/XC (X = P, As, Sb, and Bi) van der Waals heterostructures
  • 文献类型:   Article
  • 作  者:   HU XM, LIU WQ, YANG JL, ZHANG SL, YE YF
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1039/d1cp03850h EA OCT 2021
  • 出版年:   2021

▎ 摘  要

The electrical contacts at the van der Waals (vdW) interface between two-dimensional (2D) semiconductors and metal electrodes could dramatically affect the device performance. Herein, we construct a series of graphene (Gr)/XC (X = P, As, Sb, and Bi) vdW heterostructures, in which XC monolayers have aroused considerable attention recently as an emerging class of 2D semiconductors. The electronic structures and contact properties of Gr/XC vdW heterostructures are investigated systematically using first-principles calculations. The band structures indicate that both Gr/PC and Gr/AsC heterostructures form n-type Schottky contacts with Schottky barrier heights (SBHs) of 0.01 eV and 0.43 eV, respectively, while both Gr/SbC and Gr/BiC heterostructures preferably form Ohmic contacts. The different X atoms result in different work functions, electron flows, charge distributions and orientations of the dipole moment in Gr/XC heterostructures. Moreover, the tunneling probabilities increase with the increasing atom radius of X from P to Bi, indicating the most improved current and smaller contact resistance at the interfaces of Gr/BiC compared to Gr/PC, Gr/AsC and Gr/SbC heterostructures. Our work could provide meaningful information for designing high-performance nanoelectronic devices based on Gr/XC heterostructures.