• 文献标题:   Graphene-nanowalls/silicon hybrid heterojunction photodetectors
  • 文献类型:   Article
  • 作  者:   WANG HC, FU YQ
  • 作者关键词:   graphene nanowall, photoconductive, photoresponse, schottky barrier
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Univ Elect Sci Technol China
  • 被引频次:   2
  • DOI:   10.1016/j.carbon.2020.02.023
  • 出版年:   2020

▎ 摘  要

We study and fabricate graphene nanowalls/silicon hybrid heterojunction photoconductive detector to provide process technology of the device and theoretical foundation for the purpose of preparation of high-performance photodetectors. The graphene nanowalls (GNWs) film is patterned by double-layered photoresist-based photolithography and reactive ion etching (RIE) process to achieve high quality GNWs channel and fabricate three different GNWs/Si heterojunction photoconductive detectors with n-doped, intrinsic and p-doped silicon substrates (n-Si, i-Si, p-Si), respectively. The GNWs film not only acts as a photoconductive channel for carrier transport, but also constructs a Schottky heterojunction with the silicon to participate in the separation and transport of photogenerated carriers. Since the injection of holes needs to pass through the Schottky junction region, the height of the Schottky barrier determines the injection ability of photogenerated carriers, which directly affects the photoconductive gain of the GNWs and silicon. In addition, under low bias VDS, the GNWs/n-Si photoresponse current is maximum and the GNWs/p-Si photoresponse current is minimum. The photoresponse is attributed to the barrier heights of the GNWs/n-Si, GNWs/i-Si, and GNWs/p-Si with values of 0.73 eV, 0.69 eV, and 0.63 eV, respectively. The higher the barrier, the more the number of photogenerated carriers injected into the GNWs will be, and the photoresponse current is large as well. (c) 2020 Elsevier Ltd. All rights reserved.