▎ 摘 要
Graphene oxide (GO) has exhibited significant potential to improve crop cultivation and yield. The application of GO in agriculture will inevitably result in interactions with conventional contaminants, causing potential changes to environmental behavior and toxicity of conventional contaminants. This study explored the joint phytotoxicity of GO and arsenic species (arsenite [As (III)], arsenate [As (V)]) to monocot (Triticum aestivum L.) and dicot (Solamun lycopersicum) plant species. Under the environmentally relevant concentrations, GO (1 mg/L) significantly increased the phytotoxicity of As (III) and As (V) (1 mg/L), with effects being both As-and plant species-specific. One mechanism of enhanced arsenic phytotoxicity could be GO-induced up-regulation of the aquaporin and phosphate transporter related genes expression, which would lead to the increased accumulation of As (III) and As (V) in plants. In addition, co-exposure with GO resulted in more severe oxidative stress than single As exposure, which could subsequently induce damage in root plasma membranes and compromise key arsenic detoxification pathways such as complexation with glutathione and efflux. Co-exposure to GO and As also led to more significant reduction in macro-and micronutrient content. The provided data highlight the high impact of nanomaterials on the environmental risk of As in agricultural systems.