• 文献标题:   Graphene oxide and self-avoiding molecular recognition systems-assisted recombinase polymerase amplification coupled with lateral flow bioassay for nucleic acid detection
  • 文献类型:   Article
  • 作  者:   WANG Y, JIAO WW, WANG Y, WANG YC, SHEN C, QI H, SHEN AD
  • 作者关键词:   graphene oxide, carbon nanomaterial, recombinase polymerase amplification, lateral flow bioassay, nucleic acid detection
  • 出版物名称:   MICROCHIMICA ACTA
  • ISSN:   0026-3672 EI 1436-5073
  • 通讯作者地址:   Capital Med Univ
  • 被引频次:   0
  • DOI:   10.1007/s00604-020-04637-5
  • 出版年:   2020

▎ 摘  要

A new nucleic acid detection technique, termed Nano-SAMRS-RPA, is reported which employed carbon nanomaterial (graphene oxide, GO) and self-avoiding molecular recognition systems (SAMRS) to improve the specificity of recombinase polymerase amplification (RPA). In the presence of GO and SAMRS primers, the assay artifacts, including primer-dimers, nonspecific products, off-target hybrids, and non-canonical folds, are completely suppressed and eliminated, which makes the creation of RPA-based methods faster by simplifying the primer design and eliminating the need for primer optimization and complex probe. Moreover, a lateral flow bioassay (LFB) was also devised for simply and rapidly indicating the Nano-SAMRS-RPA results. Particularly, the new detection system only requires a single-labeled primer, eliminating the false-positive result from hybridization (the labeled probe and reverse primer) and the use of real-time instrument, more complex enzymatic solutions, and probes. As a result, GO, SAMRS primers, and LFB convert RPA from a technique suited only for the research laboratory into one that has a practical value in clinical settings, field environments, and at points-of-care testing. Human papillomaviruses (HPV) genotypes 16 and 18 were applied as model analytes to test the assay's availability. The initial data indicated that Nano-SAMRS-RPA could detect down to 10 copies per reaction, and the sensitivity (14/14 samples collected from HPV16 and HPV 18 patients) and specificity (75/75 samples collected from non-HPV patients) for clinical sample detection were 100%. The proof-of-concept technique can be reconfigured to detect various nucleic acid sequences by redesigning the specific RPA primers. Graphical abstract