• 文献标题:   Interfacial enhancement effect of graphene quantum dots on PEDOT:PSS/single-walled carbon nanotubes thermoelectric materials
  • 文献类型:   Article
  • 作  者:   FU P, XIAO JK, GONG JZ, ZHU Y, YAO JA, ZHANG YF, WANG SG, LIN ZD, DU FP
  • 作者关键词:   pedot:pss, graphene quantum dot, singlewalled carbon nanotube, hybrid, thermoelectric propertie
  • 出版物名称:   SYNTHETIC METALS
  • ISSN:   0379-6779
  • 通讯作者地址:  
  • 被引频次:   13
  • DOI:   10.1016/j.synthmet.2021.116861 EA AUG 2021
  • 出版年:   2021

▎ 摘  要

In the present study, Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) (PEDOT:PSS), with the incorporation of graphene quantum dot (GQD)-coated single-walled carbon nanotubes (SWCNTs), has been used in the preparation of PEDOT:PSS/SWCNTs/GQDs thermoelectric films (PSG). The effect of SWCNTs/GQDs (as a nanofiller) on the microstructure and thermoelectric properties of the composite films has been especially investigated. It was observed that the addition of GQDs will induce a phase separation between PEDOT and PSS. Furthermore, the enhanced interfacial bonding induced a microstructure ordering and an accelerated transport of carriers. The in-plane electrical conductivity and Seebeck coefficient of the obtained film reached 1036 S.cm(-1) and 13.8 mu V.K-1, respectively, for 1 wt% of SWCNTs/GQDs. These results gave a high power factor (PF) of up to 19.9 mu W.m(-1).K-2, which is about six times as high as for pristine PEDOT:PSS and also higher than that of PEDOT:PSS/SWCNTs. The obtained maximum ZT reaches 3.22 x 10(-3) with high PF value and low in-plane thermal conductivity. The present research provided a new strategy for developing high performance organic thermoelectric materials.