▎ 摘 要
We study the diffraction of neutral hydrogen atoms through suspended single-layer graphene using molecular dynamics simulations based on density functional theory. Although the atoms have to overcome a transmission barrier, we find that the de Broglie wave function for Hat 80 eV has a high probability to be coherently transmitted through about 18% of the graphene area, contrary to the case of He. We propose an experiment to realize the diffraction of atoms at the natural hexagon lattice period of 246 pm, leading to a more than 400-fold increase in beam separation of the coherently split atomic wave function compared to diffraction experiments at state-of-the art nano-machined masks. We expect this unusual wide coherent beam splitting to give rise to novel applications in atom interferometry.