▎ 摘 要
For obtaining the technical data to evaluate the performance of hydrogen storage by adsorption on graphene sheets (GS), analysis of adsorption equilibrium of hydrogen on the GS and the activated carbon were carried out based on the hydrogen adsorption data covering a wide temperature range. The GS and SAC-02 activated carbon, which respectively had a specific surface area about 300 m(2)/g and 2074 m2/g, were selected as adsorbents. Six adsorption isotherms of excess amounts of high purity hydrogen were measured at temperature from 77.15 K to 293.15 K and pressure up to 6 MPa. Parameters of Langmuir, Langmuir-Freundlich and Toth equations were set by non-linear fit against adsorption data, predicting accuracy of the equations was then evaluated by the accumulated relative errors between experimental data and those from the equations under different pressure regions. Absolute adsorption amounts determined by the modified equation were used to calculate the isosteric heat of adsorption. It shows that both adsorption isotherms of hydrogen on the GS and the activated carbon have the features of Type I, but the trend of isotherms varying over the pressure is different within the lower temperature region. Results from Langmuir equation have the largest error. Toth equation can much accurately predict the adsorption data with an overall accumulated relative error less than 4%. The value of the isosteric heat of hydrogen adsorption on the GS is about 5.06-6.37 kJ/mol, which is much higher than 4.05-5.52 kJ/mol for hydrogen on the SAC-02 activated carbon under the whole experimental condition. It reveals that interaction between hydrogen molecules and the graphene layer is stronger than that of hydrogen and carbon surface, and Toth equation could be appropriate to analyzing adsorption equilibrium for hydrogen on carbon based adsorbents. (C) 2014 Elsevier Ltd. All rights reserved.