▎ 摘 要
The study of Frequency Selective Surface (FSS) by Direct ink writing (DIW) has attracted much attention due to the convenience and effectiveness of 3D printing technology. However, the limited printing precision of DIW has heavily restricted its applications as the electromagnetic performance is highly sensitive to it, especially the precision at the microscale. Herein, the ultra-high printing precision of FSS was achieved through DIW by the uniformly dispersed graphene sheets to deeply modify the rheological behavior and the steric hindrance effect. Thus, the highly precision of the printed filament width as thin as 67 mu m with a space of only 42 mu m were achieved, which is difficult for conventional DIW, and no structural distortion is found after 3D printing, no matter it was 2D printed on a flat surface or the sharply skewed hook face, or even 3D printed to architectural structures. According to the highly improved precision, the electromagnetic performance matching between the designed model and the printed physical FSS device was perfectly achieved, reducing the center frequency error less than 0.3 GHz, and the transmission coefficient error less than 0.046. Our work promises an effective and easy preparation of high-quality FSS from the aid of graphene. (C) 2021 Published by Elsevier Ltd on behalf of Chinese Society for Metals.