• 文献标题:   Influence of ionic liquid film thickness on ion pair distributions and orientations at graphene and vacuum interfaces
  • 文献类型:   Article
  • 作  者:   WANG YL, LAAKSONEN A, LU ZY
  • 作者关键词:  
  • 出版物名称:   PHYSICAL CHEMISTRY CHEMICAL PHYSICS
  • ISSN:   1463-9076 EI 1463-9084
  • 通讯作者地址:   Stockholm Univ
  • 被引频次:   28
  • DOI:   10.1039/c3cp51226f
  • 出版年:   2013

▎ 摘  要

Microscopic structures, orientational preferences together with mass, number and electron density distributions of 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been studied on a neutral hydrophobic graphene surface, and at the IL-vacuum interface using atomistic Molecular Dynamics simulations. At the IL-graphene interface, distinct mass, number and electron density distributions are observed oscillating into the bulk region with several compact structural layers. The imidazolium ring of [BMIM] cations lies preferentially flat on the graphene surface, with its methyl and butyl side chains elongated along the graphene surface. At the IL-vacuum interface, however, the distributions of [BMIM][PF6] ion pairs are strongly influenced by the thickness of IL film. With the increase of IL film thickness, the orientations of [BMIM] cations at the IL-vacuum interface change gradually from dominant flat distributions along the graphene surface to orientations where the imidazolium rings are either parallel or perpendicular to the IL-vacuum interface with tilted angles. The outmost layers are populated with alkyl groups and imparted with distinct hydrophobic character. The calculated radial distribution functions suggest that ionic structures of [BMIM][PF6] ion pairs in IL-graphene and IL-vacuum interfacial regions are significantly different from each other and also from that in bulk regions.