▎ 摘 要
Chitosan (CTS)/corn starch (CSH)/nano-TiO2/graphene (Gr) antibacterial active packaging films were prepared by ultrasonic-assisted electrospray deposition and solution-casting methods, and the effects of the TiO2:Gr mass ratio and ultrasonication power on their morphology and mechanical, optical, thermal, barrier, and antibacterial properties were investigated. The film fabricated at a TiO2:Gr ratio of 6:4 and an ultrasonication power of 160 W exhibited a uniform distribution of the nanofillers in the CTS/CSH matrix and significantly enhanced the mechanical, barrier, and water-resistance properties. Furthermore, this film demonstrated superior ultraviolet and visible light-shielding characteristics as compared with those of the non-filled CTS/CSH film, while its Escherichia coli and Staphylococcus aureus inhibition efficiencies were equal to 96.67 +/- 0.09% and 99.85 +/- 0.13%, respectively. Therefore, the film can effectively prevent food spoilage, indicating its potential for food-packaging applications.