• 文献标题:   Polypyrrole/reduced graphene oxide composite as a low-cost novel sensing material for fast-response humidity sensor
  • 文献类型:   Article
  • 作  者:   RAVIKIRAN YT, CHETHAN B, PRASAD V, PRAKASH HGR, PRASHANTKUMAR M, TIWARI SK, THOMAS S
  • 作者关键词:   polypyyrole, graphene oxide, reduced graphene oxide, humidity sensing, hysteresi, stability
  • 出版物名称:   MATERIALS CHEMISTRY PHYSICS
  • ISSN:   0254-0584 EI 1879-3312
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1016/j.matchemphys.2023.127800 EA APR 2023
  • 出版年:   2023

▎ 摘  要

In this study, the polypyrrole/reduced graphene oxide (PrGO) composites' ability to detect humidity was investigated. Polypyrrole (PPy), a chemically produced oxidative polymer, was physically blended, for these observations in accordance with the feeding mass ratio of reduced graphene oxide (rGO). The Hummers process is utilized to produce graphene oxide (GO), which is then quickly and easily reduced to rGO by adding a small amount of selenium power. To determine the functional and morphological characteristics of the produced PrGO composites XRD, FTIR, RAMAN, SEM, and TEM characterisations were performed. To know about the humidity sensing performances, The thin film of PPy, Polypyrrole/Graphene oxide (PGO), and PrGO composites were prepared by wedging the sample on a basic glass plate using a low-cost spin coating approach. Among all the samples prepared, the PrGO composite demonstrated a sensing response of 99.99%, with a quick response and recovery time of 2 s and 4 s, respectively. The ideal characteristics such as high real sensitivity, lower limits of detection (LOD), minimal hysteresis, and perfect stability were established by PrGO composite. When compared to PPy and PGO composite, the physical properties of PrGO composite have significantly improved, including porosity, water content, and degree of swelling compare to other samples. A detailed discussion of the humidity sensing system has been made.