▎ 摘 要
Carbon nanomaterials, such as graphene nanoplatelets (GNPs) and multiwalled carbon nanotubes (MWCNTs) are potential candidates in a large number of biomedical applications. The present study investigates the effect of the difference in morphology of these materials on neural cell regeneration on a biodegradable scaffold. Electrical conductivities of all the hybrid scaffolds are found to be in between that of MWCNT/chitosan scaffold (highest conductivity) and GNP/chitosan scaffold (lowest-conductivity). While, hybrid scaffolds show improvement in elastic modulus and ultimate tensile strength over MWCNT/chitosan and GNP/chitosan scaffolds. The protein adsorption isotherms of bovine serum albumin (BSA) show greater equilibrium constant (Keq) on GNP/chitosan composites as compared to MWCNT/chitosan composites, proving more potential for cell adhesion in the former. Interactions of HT-22 hippocampal neurons with MWCNT/chitosan, GNP/chitosan and various MWCNT/GNP hybrid chitosan matrices prove cytocompatibility. The neurons acquire elongated geometry on the MWCNT/chitosan scaffold, while GNP reinforcement drives the neurons to spread cellular processes radially.