• 文献标题:   Graphene oxide modified magnetic polyamidoamide dendrimers based magnetic solid phase extraction for sensitive measurement of polycyclic aromatic hydrocarbons
  • 文献类型:   Article
  • 作  者:   TONG YY, LI SY, WU YL, GUO JH, ZHOU BY, ZHOU QX, JIANG LS, NIU JW, ZHANG Y, LIU HH, YUAN S, HUANG SY, ZHAN YL
  • 作者关键词:   graphene oxide, magnetic polyamidoamine dendrimer, polycyclic aromatic hydrocarbon,

    gas chromatography tandem mass nbsp, spectrometry

  • 出版物名称:   CHEMOSPHERE
  • ISSN:   0045-6535 EI 1879-1298
  • 通讯作者地址:  
  • 被引频次:   6
  • DOI:   10.1016/j.chemosphere.2022.134009 EA FEB 2022
  • 出版年:   2022

▎ 摘  要

In this study, graphene oxide modified magnetic polyamidoamine dendrimers (MNPs@PAMAM-G2.0@GO) nanoparticles were successfully prepared by amidation method. The obtained MNPs@PAMAM-G2.0@GO nanocomposites were examined by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), scanning electron microscope (SEM) and transmission electron microscopy (TEM), etc. MNPs@PAMAM-G2.0@GO exhibited excellent adsorption property and was investigated for magnetic solid phase extraction (MSPE) of polycyclic aromatic hydrocarbons (PAHs) from water. The detection of extracted PAHs was accomplished by high performance liquid chromatography (HPLC) and gas chromatography tandem mass spectrometry (GC-MS/MS). The target PAHs included anthracene (ANT), pyrene (PYR), fluoranthene (FLT), carbazole (CB), 7-methylquinoline (7-MQL), 9-methylcarbazole (9-MCB), dibenzothiophene (DBT) and 4,6-dimethyldibenzothiophene (4,6-DBT). Important operation parameters for MSPE that could affect the extraction efficiencies of PAHs were investigated in detail. Under optimal parameters, the constructed method demonstrated excellent linear range with 0.001-10 mu g L-1 for analytes and low limits of detection within the range of 0.11-0.9 ng L-1. The spiked average recoveries of PAHs in natural water samples ranged from 92.5% to 105.2%. The promising results indicated that MNPs@PAMAM-G2.0@GO could be employed to efficiently extract PAHs from aqueous samples.