▎ 摘 要
In this present work, we have investigated the electronic transport properties of the hybridized structure constructed by the zigzag graphene and boron-nitride (BN) nanoribbons (Z-BnNmCp, n+m+p = 16) through employing nonequilibrium Green's functions in combination with the density-functional theory. The results demonstrate that the electronic transport properties of the hybridized Z-BnNmCp nanoribbons are strongly dependent on the width of boron-nitride or graphene nanoribbons. When the numbers of n and m are not equal, the negative differential resistance behavior is observed, which can be modulated by varying the width of BN nanoribbons. The conductance of the hybridized Z-BnNmCp nanoribbons with odd numbers of zigzag carbon chains also increases by the width of BN nanoribbons. (C) 2014 AIP Publishing LLC.