▎ 摘 要
We exploit the concept of strain-induced band-structure engineering in graphene through the calculation of its electronic properties under uniaxial, shear, and combined uniaxial-shear deformations. We show that by combining shear deformations to uniaxial strains it is possible modulate the graphene energy-gap value from zero up to 0.9 eV. Interestingly enough, the use of a shear component allows for a gap opening at moderate absolute deformation, safely smaller than the graphene failure strain.