▎ 摘 要
A gauge-theory approach to describe Dirac fermions on a disclinated flexible membrane beyond the inextensional limit is formulated. The elastic membrane is considered as an embedding of a 2D surface into R-3. The disclination is incorporated through an SO(2) gauge vortex located at the origin, which results in a metric with a conical singularity. A smoothing of the conical singularity is accounted for by replacing a disclinated rigid plane membrane with a hyperboloid of near-zero curvature pierced at the tip by the SO(2) vortex. The embedding parameters are chosen to match the solution to the von Karman equations. A homogeneous part of that solution is shown to stabilize the theory. The modification of the Landau states and density of electronic states of the graphene membrane due to elasticity is discussed.