• 文献标题:   Graphene e-tattoos for unobstructive ambulatory electrodermal activity sensing on the palm enabled by heterogeneous serpentine ribbons
  • 文献类型:   Article
  • 作  者:   JANG H, SEL K, KIM E, KIM S, YANG XX, KANG S, HA KH, WANG R, RAO YF, JAFARI R, LU NS
  • 作者关键词:  
  • 出版物名称:   NATURE COMMUNICATIONS
  • ISSN:  
  • 通讯作者地址:  
  • 被引频次:   8
  • DOI:   10.1038/s41467-022-34406-2
  • 出版年:   2022

▎ 摘  要

Electrodermal activity (EDA) is a popular index of mental stress. State-of-the-art EDA sensors suffer from obstructiveness on the palm or low signal fidelity off the palm. Our previous invention of sub-micron-thin imperceptible graphene e-tattoos (GET) is ideal for unobstructive EDA sensing on the palm. However, robust electrical connection between ultrathin devices and rigid circuit boards is a long missing component for ambulatory use. To minimize the well-known strain concentration at their interfaces, we propose heterogeneous serpentine ribbons (HSPR), which refer to a GET serpentine partially overlapping with a gold serpentine without added adhesive. A fifty-fold strain reduction in HSPR vs. heterogeneous straight ribbons (HSTR) has been discovered and understood. The combination of HSPR and a soft interlayer between the GET and an EDA wristband enabled ambulatory EDA monitoring on the palm in free-living conditions. A newly developed EDA event selection policy leveraging unbiased selection of phasic events validated our GET EDA sensor against gold standards. Designing efficient sensing devices for ambulatory use remains a challenge. Here, the authors demonstrate heterogeneous serpentine ribbons enable a stretchable and robust interface between sub-micron thin graphene e-tattoos and thick and rigid printed circuit boards, which allows ambulatory electrodermal activity monitoring on the palm.