▎ 摘 要
Here we present novel quantum dot sensitized solar cells (QDSSC) based on ZnO nanoparticles (NPs)/reduced graphene oxide (RGO) nanocomposite photoanodes for better light harvesting and energy conversion. Photoelectrodes are prepared by doctor blading ZnO NPs/GO nanocomposite paste on a fluorine doped tin oxide substrate which are then sintered at 450 degrees C to obtain ZnO NPs/RGO nanocomposites. The partial reduction of GO after thermal reduction, is studied by Fourier transform infrared and Raman spectroscopies. Cadmium sulfide (CdS) and cadmium selenide (CdSe) quantum dots are deposited on the films through successive ionic layer adsorption and reaction and chemical bath deposition methods, respectively. The unique properties of ZnO NPs/RGO photoanodes, lead to a significant enhancement in the photovoltaic properties of solar cells in comparison with bare ZnO photoanodes. Current voltage characteristics of cells are studied and the best results are obtained from ZnO NPs-RGO/CdS/CdSe with photoelectric conversion efficiency of 2.20% which is almost two times higher than cells which are made by pure ZnO NPs as photoanode (1.28%). Electrochemical impedance measurements show that the enhancement can be attributed to the increase of electron transfer rate in the ZnO NPs/RGO nanocomposite photoanode which arises from the ultrahigh electron mobility in graphene (RGO) sheets. (C) 2014 Elsevier B.V. All rights reserved.