• 文献标题:   Synthesis and antibacterial activity of nanoenhanced conjugate of Ag-doped ZnO nanorods with graphene oxide
  • 文献类型:   Article
  • 作  者:   KHAN A, KAMAL T, SAAD M, AMEEN F, BHAT SA, KHAN MA, RAHMAN F
  • 作者关键词:   nanorod, graphene oxide, nanocomposite, sonication method, electron microscopy, antibacterial activity
  • 出版物名称:   SPECTROCHIMICA ACTA PART AMOLECULAR BIOMOLECULAR SPECTROSCOPY
  • ISSN:   1386-1425 EI 1873-3557
  • 通讯作者地址:  
  • 被引频次:   3
  • DOI:   10.1016/j.saa.2022.122296 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

In this paper, we report a successful synthesis of ZnO nanorods using the microwave-assisted technique, solid-state reaction method was utilized for the preparation of Zn1-xAgxO (x = 0.05, 0.1), Hummer's modified method for graphene oxide (GO) along with the sonication method to prepare GO-based Ag-doped ZnO (Zn1-xAgxO/GO: x = 0.05, 0.1) nanocomposites. These nanorods and nanocomposites were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FTIR), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy for structural properties, scanning electron microscopy (SEM) along with energy dispersive X-ray (EDX) spectroscopy for morphological analysis, and UV-Vis spectroscopy for optical properties. XRD, FTIR, and Raman measurements substantiated that each sample is well crystallized in the single-phase polycrystalline wurtzite hexagonal structure of ZnO. The average crystallite size is found to be in decreasing order ranges 40 nm to 29 nm, respectively, along with a significant reduction in the optical bandgap. The SEM images showed a clear evidence of nanorods of ZnO, while the EDX spectra verified the presence of Zn, Ag, O, and C elements in the synthesized samples with their nominal percentage. Furthermore, the prepared nanocomposites effectively inhibited the growth of Staphylococcus aureus and Escherichia coli. In comparison to pure ZnO nanorods, GO-based Ag-doped ZnO nanorods showed improved antibacterial activity against both S. aureus and E. coli.