▎ 摘 要
Electron beam irradiation at 60 kV is used to open holes in graphene and expose fresh than edges for further examination by electron energy loss spectroscopy (EELS) at the single atom level combined with scanning transmission electron microscopy (STEM). We show that light element surface adatoms attached on top of the edges of graphene influence the carbon K-edge EELS. A single nitrogen adatom on graphene was imaged by STEM and chemically identified by EELS. We also extend this study to small graphene nanoribbons, termed nanoconstrictions. The arrival of surface adatoms disrupt the detection of unique carbon edge states present in both single edges and in the nanoconstrictions. The spatial distribution of the EELS signals is also examined. These results show that edge states in graphene are highly sensitive to single atom functionalization and sheds light on their long-term stability.