▎ 摘 要
We used plane-wave density functional theory (DFT) to investigate the properties of C-60-Mgraphene (C-60-MG) nanostructures (M = Ti, Cr, Mn, Fe, or Ni). The calculated binding energies suggested that C-60 could be mounted on a metalgraphene surface with good bonding stability. The high-spin C-60-Cr-G nanostructure was found to be more stable than the previously reported low-spin configuration. Also, C-60-Ti was found to stand symmetrically upright on the graphene surface, while in the remaining four cases, the orientation of C-60-M in the C-60-M-G nanostructures were bent, and the geometry of each structure is somewhat different, depending on the identity of the bridging metal atom. The large geometric distortion of C-60-M in the tilted C-60-M-G nanostructures (with Cr, Fe, Mn, and Ni) is attributed to the spin polarization in the 3d orbitals and dispersion interactions between graphene and C-(60). Additional DFT calculations on smaller C-M-60-benzene complexes with atomic-orbital (AO) basis sets provided consistent results on structural geometry and numbers of unpaired electrons. The DFT calculations using AO basis sets suggested that the C-60-M unit was flexible with respect to the bending motion. The knowledge of metal-dependent geometric differences derived in this study may be useful in designing nanostructures for spintronic and electronic applications.