• 文献标题:   Quantitative Transport Measurements of Fractional Quantum Hall Energy Gaps in Edgeless Graphene Devices
  • 文献类型:   Article
  • 作  者:   POLSHYN H, ZHOU H, SPANTON EM, TANIGUCHI T, WATANABE K, YOUNG AF
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW LETTERS
  • ISSN:   0031-9007 EI 1079-7114
  • 通讯作者地址:   Univ Calif Santa Barbara
  • 被引频次:   1
  • DOI:   10.1103/PhysRevLett.121.226801
  • 出版年:   2018

▎ 摘  要

Owing to their wide tunability, multiple internal degrees of freedom, and low disorder, graphene heterostructures are emerging as a promising experimental platform for fractional quantum Hall ( FQH) studies. Here, we report FQH thermal activation gap measurements in dual graphite-gated monolayer graphene devices fabricated in an edgeless Corbino geometry. In devices with substrate-induced sublattice splitting, we find a tunable crossover between single-and multicomponent FQH states in the zero energy Landau level. Activation gaps in the single-component regime show excellent agreement with numerical calculations using a single broadening parameter Gamma approximate to 7.2 K. In the first excited Landau level, in contrast, FQH gaps are strongly influenced by Landau level mixing, and we observe an unexpected valley-ordered state at integer filling. nu = -4.