▎ 摘 要
A well dispersed aqueous suspension of reduced graphene oxide (RGO) enriched with silk fibroin nanofibrils and regenerated silk fibroin (RSF) was properly prepared, taking the advantage of the so called selective aggregation of silk fibroin nanofibrils on reduced graphene oxide nanosheets, and then a series of composited sponges with different proportions of RGO and RSF were obtained by the process of freezing and ethanol treatment at low temperature. To improve the pressure-sensitive conductivity of those composited sponges, the extra RGO nanosheets were deposited on the surface of the sponge by solution immersion. SEM observation and mechanical testing showed that the introduction of RGO not only made the corresponding micro/nano structure in RSF based sponge benefit the adhering of extra RGO nanosheets, but also favorited to the mechanical properties of the sponge. Moreover, the RGO/RSF sponges displayed significant strength and elasticity under the completely wet state, and could achieve good compression recovery effect and pressure sensing performance between compression strain of 0%-80%. Among them, the sensitivity of such composited sponge with the optimal proportion of the component could reach 0.15 kPa(-1) regarding its resistance change under low pressure. Also, it worked efficiently under the pressure in the range of 0-17.3 kPa and presented excellent electrical stability and durability. Therefore, such pressure sensing material based on RGO/RSF sponge is expected to apply in energy-saving and environmental friendly flexible electronic devices due to its high sensitivity, wide working range, adjustable structure, renewability, good plasticity and so on.