▎ 摘 要
It is known that the combination of TiO2 and graphene and the control of TiO2 crystal facets are both effective routes to improve the photocatalytic performance of TiO2. Here, we report the synthesis and the photocatalytic CO2 reduction performance of graphene supported TiO2 nanocrystals with coexposed {001} and {101} facets (G/TiO2-001/101). The combination of TiO2 and graphene enhanced the crystallinity of TiO2 single nanocrystals and obviously improved their dispersion on graphene. The "surface heterojunction" formed by the coexposed {001} and {101} facets can promote the spatial separation of photogenerated electrons and holes toward different facets and the supports of graphene can further enhance the separation through accelerated electron migration from TiO2 to graphene. The G/TiO2-001/101 exhibited high photocatalytic CO2-reduction activity with a maximum CO yield reaching 70.8 mu mol g(-1) h(-1). The enhanced photocatalytic activity of the composites can be attributed to their high surface area, good dispersion of TiO2 nanoparticles, and effective separation of excited charges due to the synergy of graphene supports and the co-exposure of {001} and {101} facets.