• 文献标题:   Single-Crystalline Monolayer Graphene Wafer on Dielectric Substrate of SiON without Metal Catalysts
  • 文献类型:   Article
  • 作  者:   SHIN BG, BOO DH, SONG B, JEON S, KIM M, PARK S, AN ES, KIM JS, SONG YJ, LEE YH
  • 作者关键词:   graphene, siliconoxynitride, sion, dielectric substrate, singlecrystalline graphene wafer
  • 出版物名称:   ACS NANO
  • ISSN:   1936-0851 EI 1936-086X
  • 通讯作者地址:   Inst Basic Sci
  • 被引频次:   5
  • DOI:   10.1021/acsnano.9b00976
  • 出版年:   2019

▎ 摘  要

Many scientific and engineering efforts have been made to realize graphene electronics by fully utilizing intrinsic properties of ideal graphene for last decades. The most technical huddles come from the absence of wafer-scale graphene with a single-crystallinity on dielectric substrates. Here, we report an epitaxial growth of single-crystalline monolayer graphene directly on a single-crystalline dielectric SiON-SiC (0001) with a full coverage via epitaxial chemical vapor deposition (CVD) without metal catalyst. Si The dielectric surface of SiON provides atomically flat and chemically inert interface by passivation of dangling bonds, which keeps intrinsic properties of graphene. Atomic structures with a clean interface, full coverage of single-crystalline monolayer, and the epitaxy of graphene on SiON were confirmed macroscopically by mapping low energy electron diffraction (LEED) and Raman spectroscopy, and atomically by scanning tunneling microscopy (STM). Both of measured and calculated local density of states (LDOS) exhibit a symmetric and sharp Dirac cone with a Dirac point located at a Fermi level. Our method provides a route to utilize a single-crystalline dielectric substrate for ideal graphene growth for future applications.