• 文献标题:   Toward Graphene-Enhanced Spectroelectrochemical Sensors
  • 文献类型:   Article
  • 作  者:   KAUSHIK P, SONIA FJ, HAIDER G, THAKUR MK, VALES V, KONG J, KALBAC M
  • 作者关键词:   charge transfer, grapheneenhanced raman spectroscopy, in situ spectroelectrochemistry, methylene blue, spectroelectrochemical sensor
  • 出版物名称:   ADVANCED MATERIALS INTERFACES
  • ISSN:   2196-7350
  • 通讯作者地址:  
  • 被引频次:   1
  • DOI:   10.1002/admi.202200478 EA JUN 2022
  • 出版年:   2022

▎ 摘  要

Spectroelectrochemical sensors (SPECSs) sensitive to the least amount of sample are crucial for widespread applications, including early-stage detection of fatal diseases and other biomedical applications. However, despite the major disadvantage of biomolecule instability on noble metal nanoparticle-assisted surface-enhanced SPECSs, designing a suitable alternative remains a great challenge. The authors report a proof-of-concept graphene-enhanced spectroelectrochemical sensors (GE-SPECSs) employing graphene-enhanced Raman spectroscopy (GERS). Pristine (p-) and hydrogenated (h-) single-layer graphene (SLG) are utilized to study the oxidized and reduced states of a probe molecule, methylene blue (MB). The hole-doped h-SLG possesses efficient GERS signals compared with p-SLG, resulting in a limit of detection (LOD) < 10(-7) m. By taking advantage of the tunable work function of graphene, the authors demonstrate that the GERS signal from the probe molecule can be varied and different oxidation states of the molecule can be studied by applying suitable external potentials. The LOD obtained in an aqueous system (approximate to 10(-7) m) is comparable with standard surface-enhanced SPECSs. The authors' design thus creates a novel pathway for developing highly efficient, biofriendly, and cost-effective SPECSs.