• 文献标题:   Reduced graphene oxide wrap buffering volume expansion of Mn2SnO4 anodes for enhanced stability in lithium-ion batteries
  • 文献类型:   Article
  • 作  者:   CUI LF, LI X, YIN CC, WANG JJ, LI SS, ZHANG QL, KANG SF
  • 作者关键词:  
  • 出版物名称:   DALTON TRANSACTIONS
  • ISSN:   1477-9226 EI 1477-9234
  • 通讯作者地址:   Univ Shanghai Sci Technol
  • 被引频次:   2
  • DOI:   10.1039/c8dt03942a
  • 出版年:   2019

▎ 摘  要

MSnO4 (M = Mn, Zn, Co, Mg, etc.) has been widely investigated as an anode material for lithium-ion batteries in recent years, but its practical applications are limited by serious capacity loss caused by severe volume expansion during Li+ insertion/extraction. So far, hollow structures, carbon coating, and encapsulation by reduced graphene oxide have been introduced to improve the electrochemical properties of MSnO4. In this study, Mn2SnO4 nanoparticles@reduced graphene oxide (Mn2SnO4@rGO) composites were prepared using simple steps and applied as anode materials for lithium-ion batteries. The rGO sheet encapsulated Mn2SnO4 nanoparticles show improved electrochemical properties. The first discharge capacity of Mn2SnO4@rGO reaches 1223.5 mAh g(-1) and remains at 542.0 mAh g(-1) after 100 cycles at a current density of 0.1 A g(-1). The electrochemical properties were significantly improved compared to those of pure Mn2SnO4 nanoparticles.