▎ 摘 要
A graphene-oxide-semiconductor (GOS) planar-type electron source was fabricated by direct synthesis of graphene on an oxide layer via low-pressure chemical vapor deposition. It achieved a maximum electron emission efficiency of 32.1% by suppressing the electron inelastic scattering within the topmost gate electrode using a graphene electrode. In addition, an electron emission current density of 100mA/cm(2) was observed at an electron emission efficiency of 16.2%. The electron energy spread was well fitted to Maxwell-Boltzmann distribution, which indicates that the emitted electrons are the thermally equilibrium state within the electron source. The full-width at half-maximum energy spread of the emitted electrons was approximately 1.1eV. The electron emission efficiency did not deteriorate after more than 42h of direct current operation. Thus, the GOS planar-type electron source has the potential to be an excellent electron gun for electron microscopy.