• 文献标题:   Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: stimuli-responsive carriers, co-delivery and suppressing resistance
  • 文献类型:   Review
  • 作  者:   ASHRAFIZADEH M, SAEBFAR H, GHOLAMI MH, HUSHMANDI K, ZABOLIAN A, BIKARANNEJAD P, HASHEMI M, DANESHI S, MIRZAEI S, SHARIFI E, KUMAR AP, KHAN H, HOSSEIN HHS, VOSOUGH M, RABIEE N, THAKUR VK, MAKVANDI P, MISHRA YK, TAY FR, WANG YZ, ZARRABI A, ORIVE G, MOSTAFAVI E
  • 作者关键词:   anticancer chemotherapy, carbon nanomaterial, doxorubicin, drug resistance, graphene oxide, stimuliresponsive
  • 出版物名称:   EXPERT OPINION ON DRUG DELIVERY
  • ISSN:   1742-5247 EI 1744-7593
  • 通讯作者地址:  
  • 被引频次:   28
  • DOI:   10.1080/17425247.2022.2041598 EA APR 2022
  • 出版年:   2022

▎ 摘  要

Introduction The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. Areas covered The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer, GO-mediated photothermal therapy, and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. Expert opinion GO nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Besides DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. DOX-loaded GO nanoparticles have demonstrated theranostic potential. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.