▎ 摘 要
A novel type of 3D porous Si-G micro/nanostructure (i.e., 3D interconnected network of graphene-wrapped porous silicon spheres, Si@G network) was constructed through layer-by-layer assembly and subsequent in situ magnesiothermic-reduction methodology. Compared with bare Si spheres, the as-synthesized Si@G network exhibits markedly enhanced anodic performance in terms of specific capacity, cycling stability, and rate capability, making it an ideal anode candidate for high-energy, long-life, and high-power lithium-ion batteries.