▎ 摘 要
Red phosphorus @reduced graphene oxide (P @rGO) nanohybrid was synthesized via a two-step hydrothermal process. The obtained P @rGO nanohybrid was characterized by TEM, SEM, Raman, XRD and XPS. It was found that the nano-scale red phosphorus encapsulated in the reduced graphene oxide and the existence of phosphorus promote the reduction of graphene oxide. The electrochemical performance of P @rGO nanohybrid as an anode material was investigated by galvanostatic charge/discharge, rate performance, cyclic voltammetry and AC impedance test. With increasing the mass of rGO, the electrochemical performance of P @rGO nanohybrid was significantly enhanced. The first discharge/charge specific capacity of the nanohybrid prepared at optimum condition (P:GO = 7:3) could achieve approximately 2400 mAh/g and 1600 mAh/g respectively and still retained similar to 1000 mAh/g after 80 cycles and the coulombic efficiency maintained almost 100%. The enhancement in P @rGO nanohybrid was attributed to the introduction of graphene, which led to the elimination of volume effect and the enhancement of conductively of pure red phosphorus. (C) 2017 Elsevier B.V. All rights reserved.