▎ 摘 要
Different from researches in two-terminal nanoscale graphene structures, the negative differential resistance (NDR) phenomenon in graphene nanoribbon superlattice (GNSL) field-effect transistors (FETs) is studied in this reported work. Numerical analyses of two types of GNSL FETs with different gate voltages reveal that NDR occurs in some 'Z'-type GNSL FETs under some gate voltages, which develops NDR research compared with the traditional two-terminal nanoscale structures. Based on these results, two trends are observed: the 3m + 2 series GNSL FETs easily exhibit NDR, whereas it is more difficult to achieve this phenomenon with narrow FETs. This phenomenon is explained by the transmission coefficient as well as ab-initio calculations of the energy levels, where the entire channel of the FET is considered as a supercell. Through this analysis, the effect of gate control on energy-level localisation is uncovered, and a heterojunction-like explanation is proposed. This new explanation bridges the gap between a novel structure's physical analysis and the general semiconductor device concept, which can also provide inspiration for improving our understanding of novel nanostructure devices.