• 文献标题:   Graphene nanoplatelet/cellulose acetate film with enhanced antistatic, thermal dissipative and mechanical properties for packaging
  • 文献类型:   Article
  • 作  者:   GAO ZJ, LI Y, HUANG P, ZOU R, LI YQ, FU SY
  • 作者关键词:   graphene nanoplatelet, cellulose acetate, composite, antistatic
  • 出版物名称:   CELLULOSE
  • ISSN:   0969-0239 EI 1572-882X
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1007/s10570-023-05155-2 EA APR 2023
  • 出版年:   2023

▎ 摘  要

With the increased concern over environment protection, cellulose acetate (CA) has drawn great interests as an alternative for packaging material due to its biodegradability and abundant resources; whereas, the poor antistatic property and thermal conductivity restrict its application in packaging. In this work, we proposed a simple but effective strategy to produce high performance graphene nanoplatelet (GNP)/CA composite films via the consecutive homogenization and solvent casting processes. Relying on the spontaneous absorption of CA during homogenization, the GNP/CA produced shows an excellent dispersibility in the N,N-Dimethylformamide (DMF) solution and many fewer structural defects compared with GNPs alone. As a result, the composite films obtained exhibit simultaneously and significantly enhanced antistatic, heat dissipative and mechanical properties compared with CA. Specifically, the GNP/CA composite with the optimal formula has promising overall performances (namely, surface resistivity of 3.33 x-10(7)Omega/sq, in-plane thermal conductivity of 5.359 W(m center dot K), out-of-plane thermal conductivity of 0.785 W(m center dot K), and tensile strength of 37.1 MPa). Featured by its promising overall properties, simple production processes and biodegradability, the as-prepared GNP/CA composite film shows a great potential for application in packaging.