▎ 摘 要
Several studies have been done on physiochemical properties of thin films of graphene materials, but less on their mechanical properties. The mechanical properties such as tensile and storage modulus of films of graphene oxide (GO), different reduced graphene oxides (rGO), functionalised reduced graphene oxide (frGO) and a few layers graphene (graphene) were analysed in this study. During syntheses processes, a range of variations occurs due to different reducing agents and functionalising components used; this affects or changes the mechanical properties of the materials. In addition, it has become vital to comprehend the mechanical properties of these films as the potential applications such as sensor and electrodes demand extended life cycles or lifetime. It has been found that the ultimate tensile strength (UTS), tensile modulus, and storage modulus vary across all the samples that highly depend on nature/efficiency of reducing agent used, amount of impurities such as oxygen functional groups and defect density such as discrepancies/holes in the aromatic structure. The highest UTS and modulus have been identified with a few layers graphene and with hydroiodic acid reduced GO among the rGOs. The frGO shows almost similar properties to that of graphene.