▎ 摘 要
In order to solve the problem of electromagnetic radiation and interference, improving the electromagnetic interference shielding effectiveness (EMI SE) of polymer nanocomposites is still an arduous challenge. Three-dimensional (3D) lightweight porous carbon nanotube/graphene nanosheet aerogels (CNT/GN) were prepared by freeze-drying method. The CNT/GN conductive framework template was filled with dicyclopentadiene (DCPD), and the polydicyclopentadiene (PDCPD)-CNT/ GN composites were prepared by frontal ring-opening metathesis polymerization (FROMP). Compared with PDCPD-CNT/ GN-1 (the GN-1 diameter of 0.5 similar to 1 mu m), the PDCPD-CNT/GN-2 (the GN-2 diameter of 1 similar to 2 mu m) can form a more regular and compact conductive network structure, thereby achieving higher EMI shielding effectiveness (SE). The 3D framework not only solves the aggregation of CNT and GN, but also serves as a fast channel for electronic transmission, attenuating the incoming electromagnetic waves. Due to the existence of this 3D nano-hybrid framework, the PDCPD-3CNT/2GN-2 composites containing 3.5 wt% of 3CNT/2GN-2 aerogel exhibit the conductivity of 61 S/m and EMI SE of 43 dB. All PDCPD-CNT/GN composites possess a high glass transition temperature (T-g) above 150 degrees C and maintain excellent thermal stability.