• 文献标题:   One-step chemically controlled wet synthesis of graphene nanoribbons from graphene oxide for high performance supercapacitor applications
  • 文献类型:   Article
  • 作  者:   KHANDELWAL M, KUMAR A
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF MATERIALS CHEMISTRY A
  • ISSN:   2050-7488 EI 2050-7496
  • 通讯作者地址:   Indian Inst Technol
  • 被引频次:   34
  • DOI:   10.1039/c5ta07603j
  • 出版年:   2015

▎ 摘  要

The present manuscript for the first time reports a novel one-step wet chemical approach to synthesize about 150-300 nm wide graphene nanoribbons (GNRs) by reduction of graphene oxide (GO) using malonic acid as a reducing agent. Optical, X-ray diffraction, high resolution transmission electron microscopy, Raman, infrared, X-ray photoelectron spectroscopy and C-13 nuclear magnetic resonance (NMR) demonstrated the effective reduction of GO. The average thickness of GNRs has been estimated by atomic force microscopy at 3.3 + 0.2 nm, which is reduced significantly to 1.1 + 0.5 nm upon annealing at 300 degrees C (GNRs-300). In the process of nucleation and growth, the intermediate(s), formed between malonic acid and GO undergo twisting/folding involving supramolecular interactions to yield similar to 0.15 to 1 mm long curled GNRs. C-13 NMR demonstrates a significant increase in the sp(2) character of the nanoribbons following the order GO < GNRs < GNRs-300, as also evidenced by the conductivity measurements. GNRs exhibited a high specific capacitance value of 301 F g(-1) at 1 A g(-1) with good cyclic stability for 4000 charge-discharge cycles at 15 A g(-1), and high energy density/power density (16.84 W h kg(-1)/5944 W kg(-1)) in an aqueous electrolyte demonstrating their tremendous potential as electrode material for energy storage applications.