▎ 摘 要
Carbon nanotubes were unzipped to become reduced-graphene nanoribbons via one-step solvothermal process in a Teflon-lined autoclave. The samples were characterized by X-ray diffraction, thermo-gravimetric analysis and transmission electrical microscopy, respectively. Results showed that the solvothermal reaction temperature played an important role in the structure of the samples. When it was 75 degrees C, carbon nanotubes were completely cutted into graphene oxide nanoribbons. Moreover, when it was 155 degrees C, they were become reduced-graphene nanoribbons. Furthermore, the as-prepared reduced-graphene nanoribbons could improve mechanical strength of the phenolic resin/hollow glass beads foamed composites. When the reduced-graphene nanoribbons loading was 0.4 wt%, the tensile and compressive strength of the composites were increased by 19.7% and 21.3%, respectively.