▎ 摘 要
The nonlinear in-plane elastic properties of graphene are calculated using density-functional theory. A thermodynamically rigorous continuum description of the elastic response is formulated by expanding the elastic strain energy density in a Taylor series in strain truncated after the fifth-order term. Upon accounting for the symmetries of graphene, a total of fourteen nonzero independent elastic constants are determined by least-squares fit to the ab initio calculations. The nonlinear continuum description is valid for infinitesimal and finite strains under arbitrary in-plane tensile loading in circumstance for which the bending stiffness can be neglected. The continuum formulation is suitable for incorporation into the finite element method.