• 文献标题:   Lattice Expansion in Seamless Bilayer Graphene Constrictions at High Bias
  • 文献类型:   Article
  • 作  者:   BORRNERT F, BARREIRO A, WOLF D, KATSNELSON MI, BUCHNER B, VANDERSYPEN LMK, RUMMELI MH
  • 作者关键词:   bilayer graphene, tem, strain, constriction, lattice expansion
  • 出版物名称:   NANO LETTERS
  • ISSN:   1530-6984 EI 1530-6992
  • 通讯作者地址:   Columbia Univ
  • 被引频次:   25
  • DOI:   10.1021/nl301232t
  • 出版年:   2012

▎ 摘  要

Our understanding of sp(2) carbon nanostructures is still emerging and is important for the development of high performance all carbon devices. For example, in terms of the structural behavior of graphene or bilayer graphene at high bias, little to nothing is known. To this end, we investigated bilayer graphene constrictions with closed edges (seamless) at high bias using in situ atomic resolution transmission electron microscopy. We directly observe a highly localized anomalously large lattice expansion inside the constriction. Both the current density and lattice expansion increase as the bilayer graphene constriction narrows. As the constriction width decreases below 10 nm, shortly before failure, the current density rises to 4 x 10(9) A cm(-2) and the constriction exhibits a lattice expansion with a uniaxial component showing an expansion approaching 5% and an isotropic component showing an expansion exceeding 1%. The origin of the lattice expansion is hard to fully ascribe to thermal expansion. Impact ionization is a process in which charge carriers transfer from bonding states to antibonding states, thus weakening bonds. The altered character of C-C bonds by impact ionization could explain the anomalously large lattice expansion we observe in seamless bilayer graphene constrictions. Moreover, impact ionization might also contribute to the observed anisotropy in the lattice expansion, although strain is probably the predominant factor.