▎ 摘 要
A series of mildly oxidized graphene oxide (MOGO) reinforced polydicyclopentadiene composites (MOGO/polyDCPD) were prepared via the in situ polymerization of DCPD in the presence of MOGO using ring-opening metathesis polymerization (ROMP). The inter-crosslinking networks between MOGO and polyDCPD backbones formed the reinforced composite structures, examined qualitatively by swelling tests. Bending tests, DMA and TGA measurements were employed to study the optimal loading content of MOGO for achieving the best mechanical and thermal properties of MOGO/polyDCPD composites. The results showed that the maximum mechanical performance was achieved with 0.1wt% of MOGO loading. Excess MOGO led to decreased mechanical properties due to the poor solubility and uneven distribution of MOGO in the polymer matrix, which was confirmed by SEM. Meanwhile, the thermal stability of MOGO/polyDCPD composites showed a similar trend. The decomposition temperature at 10wt% weight loss was significantly increased compared with the unfilled polyDCPD, but decreased with composition of MOGO above 0.1wt%. The addition of MOGO may not only inhibit the back-biting from the catalyst and the formation of low molecular weight oligomers in the polymer, but also covalently immobilize them on its flake.