• 文献标题:   Electronic and magnetic properties of graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   OWENS FJ
  • 作者关键词:  
  • 出版物名称:   MOLECULAR PHYSICS
  • ISSN:   0026-8976
  • 通讯作者地址:   Armament Res Dev Engn Ctr
  • 被引频次:   7
  • DOI:   10.1080/00268970600997655
  • 出版年:   2006

▎ 摘  要

Molecular orbital calculations of the electronic properties of graphene nanoribbons as a function of length in the nanometre range show a pronounced decrease in the band gap and ionization potential with increasing length. It is shown that length can be used to design the materials to be insulating, semiconducting or metallic. A low ionization potential (work function), less than single walled carbon nanotubes, is obtained at the longest length of the calculation (2.3 nm). This latter result suggests the possibility of using graphene nanoribbons as electric field induced electron emitters. Calculations on boron and nitrogen doped carbon nanoribbons indicate that the triplet state is more stable than the singlet state.