• 文献标题:   Platinum contacts for 9-atom-wide armchair graphene nanoribbons
  • 文献类型:   Article
  • 作  者:   HSU CW, ROHDE M, BARIN GB, GANDUS G, PASSERONE D, LUISIER M, RUFFIEUX P, FASEL R, VAN DER ZANT HSJ, EL ABBASSI M
  • 作者关键词:  
  • 出版物名称:   APPLIED PHYSICS LETTERS
  • ISSN:   0003-6951 EI 1077-3118
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1063/5.0143663
  • 出版年:   2023

▎ 摘  要

Creating a good contact between electrodes and graphene nanoribbons (GNRs) has been a long-standing challenge in searching for the next GNR-based nanoelectronics. This quest requires the controlled fabrication of sub-20 nm metallic gaps, a clean GNR transfer minimizing damage and organic contamination during the device fabrication, as well as work function matching to minimize the contact resistance. Here, we transfer 9-atom-wide armchair-edged GNRs (9-AGNRs) grown on Au(111)/mica substrates to pre-patterned platinum electrodes, yielding polymer-free 9-AGNR field-effect transistor devices. Our devices have a resistance in the range of 10(6)-10(8) O in the low-bias regime, which is 2-4 orders of magnitude lower than previous reports. Density functional theory calculations combined with the non-equilibrium Green's function method explain the observed p-type electrical characteristics and further demonstrate that platinum gives strong coupling and higher transmission in comparison to other materials, such as graphene.