▎ 摘 要
For achieving a higher supercapacitor performance, electrode material with high surface area and conductivity such as graphene, graphene nanoplatelets (GNP), and carbon nanotubes along with Transition Metal oxides (TMO) can be used. Herein, the composite of graphene nanoplatelets with ternary metal oxide of manganese, nickel, and cobalt (MNC) is synthesized through a facile cost-effective hydrothermal process and its compositional, morphological, and electrochemical properties are investigated. As-synthesized MNC-GNP composite showed excellent electrochemical properties owing to the high porosity offered by graphene nanoplatelets and synergistic effects produced by individual components of the composite. For comparative studies, ternary oxide MNC was prepared by the same hydrothermal route. The cubic structure of the MNC-GNP composite is confirmed by X-ray diffraction (XRD). Scanning Electron Microscope (SEM) showed distinct hierarchical dendritic structures which showed an increase in density by the addition of graphene nanoplatelets. Electrochemical testing revealed that MNC-GNP exhibited an enhanced specific capacity of 605 mAh g-1 which is higher compared to MNC which exhibited 243 mAh g-1 at a current density of 2 mV s-1. GCD also depicted an increased chargedischarge time in the case of MNC-GNP as compared to its counterpart. MNC-GNP has also shown charge stability up to 99.5 % of capacity retention up to 1000 cycles. Hence, synthesized composite shows to be an effective electrode material for supercapacitors owing to enhanced electrochemical properties.