▎ 摘 要
Transition metal phosphides (TMPs) have been one of the ideal candidates as low-cost and high-efficiency catalysts for hydrogen evolution reactions (HERs). We report herein a novel TMP architecture, Fe2P nanoparticles/reduced graphene oxide (rGO) nanosheets/Fe2P nanoparticles (Fe2P@rGO) sandwich-structured (Fe2P@rGO) nanowall arrays on a Ti plate. This nanostructure was easily prepared via one-step electrodeposition followed by a low-temperature phosphidation reaction. The Fe2P@rGO nanowall array film is featured with maximally exposed catalytic sites, fast electron and mass transport, and robust structure stability, and therefore it behaves as an excellent HER electrocatalyst. The Fe2P@rGO shows a low overpotential of 101 mV at a current density of 10 mA cm(-2) and a small Tafel slope of 55.2 mV dec(-1) with a large exchange current density of 0.146 mA cm(-2). Furthermore, the catalyst exhibits superior durability evidenced by about 87% catalytic activity retention against about 55% for the commercial Pt/C catalyst after a 12 h test. The study presents a new nanoengineering strategy for high-performance TMP-based HER catalysts.