▎ 摘 要
In this paper, we proposed a theoretical model in the far-infrared and terahertz (THz) bands, which are dumbbell-shaped graphene metamaterial arrays with a combination of graphene nanobelt and two semisphere-suspended heads. We report a detailed theoretical investigation on how to enhance localized electric field and the absorption in the dumbbell-shaped graphene metamaterial arrays. The simulation results show that absorption characteristics can be changed by changing the geometrical parameters of the structure and the Fermi level of graphene. Furthermore, we have discovered that the resonant wavelength is insensitive to TM polarization. In addition, we also find that the double-layer graphene arrays have better absorption characteristics than single-layer graphene arrays. This work allows us to achieve tunable terahertz absorber and may also provide potential applications in optical filter and biochemical sensing.