• 文献标题:   Carnosine-graphene oxide conjugates decorated with hydroxyapatite as promising nanocarrier for ICG loading with enhanced antibacterial effects in photodynamic therapy against Streptococcus mutans
  • 文献类型:   Article
  • 作  者:   GHOLIBEGLOO E, KARBASI A, POURHAJIBAGHER M, CHINIFORUSH N, RAMAZANI A, AKBARI T, BAHADOR A, KHOOBI M
  • 作者关键词:   s. mutan, antimicrobial photodynamic therapy, indocyanine green, graphene oxide, hydroxyapatite, carnosine
  • 出版物名称:   JOURNAL OF PHOTOCHEMISTRY PHOTOBIOLOGY BBIOLOGY
  • ISSN:   1011-1344
  • 通讯作者地址:   Univ Tehran Med Sci
  • 被引频次:   16
  • DOI:   10.1016/j.jphotobiol.2018.02.004
  • 出版年:   2018

▎ 摘  要

Antimicrobial photodynamic therapy (aPDT) has been emerged as a noninvasive strategy to remove bacterial contaminants such as S. mutans from the tooth surface. Photosensitizer (PS), like indocyanine green (ICG), plays a key role in this technique which mainly suffers from the poor stability and concentration-dependent aggregation. An appropriate nanocarrier (NC) with enhanced antibacterial effects could overcome these limitations and improve the efficiency of ICG as a PS. In this study, various ICG-loaded NCs including graphene oxide (GO), GO-carnosine (Car) and GO-Car/Hydroxyapatite (HAp) were synthesized and characterized by Fourier Transform Infrared Spectroscopy (FT-IR), X-ray Diffraction (XRD), Filed Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive Spectroscopy (EDS), Zeta Potential and Ultraviolet-Visible spectrometry (UV-Vis). The colony forming unit and crystal violet assays were performed to evaluate the antimicrobial and anti-biofilm properties of PSs against S. mutans. The quantitative real-time PCR approach was also applied to determine the expression ratio of the gtfB gene in S. mutans. The zeta potential analysis and UV-Vis spectrometry indicated successful loading of ICG onto/into NCs. GO-Car/HAp showed highest amount of ICG loading (57.52%) and also highest aqueous stability after one week (94%). UV-Vis spectrometry analyses disclosed a red shift from 780 to 800 nm for the characteristic peak of ICG-loaded NCs. In the lack of aPDT, GO-Car@ICG showed the highest decrease in bacterial survival (86.4%) which indicated that Car could significantly promote the antibacterial effect of GO. GO@ICG, GO-Car@ICG and GO-Car/HAp@ICG mediated aPDT, dramatically declined the count of S. mutans strains to 91.2%, 95.5% and 93.2%, respectively (P < 0.05). The GO@ICG, GO-Car@ICG, GO -Car/HAp@ICG significantly suppressed the S. mutans biofilm formation by 51.4%, 63.8%, and 56.8%, respectively (P < 0.05). The expression of gtfB gene was considerably reduced to 6.0, 9.0 and 7.9 -fold after aPDT in the presence of GO@ICG, GO-Car@ICG, GO-Car/HAp@ICG, respectively (P < 0.05). It could be concluded that the multi-functionalized GO as a novel nanocarrier could significantly enhance the ICG loading, stability, and improve its inhibitory effects as a photosensitizer in aPDT against S. mutans. These findings might provide opportunity for efficient treatment of local dental infections.